|
uDmod1_nlsr::nlxb_01
|
15:36:49.791
|
15:36:49.869
|
0.078
|
0.0439
|
0.0356
|
**
|
maxiter = 150
|
Require hand-made formulas and scaling
|
|
uDmod1_nlsr::nlxb_02
|
15:36:49.869
|
15:36:49.963
|
0.094
|
0.0430
|
0.0344
|
**
|
maxiter = 150
|
Require hand-made formulas and scaling
|
|
uDmod1_nlsr::nlxb_03
|
15:36:49.963
|
15:36:50.041
|
0.078
|
0.0433
|
0.0349
|
**
|
maxiter = 150
|
Require hand-made formulas and scaling
|
|
uDmod1_nlsr::nlxb_04
|
15:36:50.041
|
15:36:50.135
|
0.094
|
0.0460
|
0.0364
|
**
|
maxiter = 150
|
Require hand-made formulas and scaling
|
|
uDmod1_nlsr::nlxb_05
|
15:36:50.135
|
15:36:50.213
|
0.078
|
0.0472
|
0.0375
|
**
|
maxiter = 150
|
Require hand-made formulas and scaling
|
|
uDmod1_nlsr::nlxb_06
|
15:36:50.213
|
15:36:50.291
|
0.078
|
0.0950
|
0.0742
|
**
|
maxiter = 150
|
Require hand-made formulas and scaling
|
|
uDmod1_nlsr::nlxb_07
|
15:36:50.307
|
15:36:50.385
|
0.078
|
0.0433
|
0.0349
|
**
|
maxiter = 150
|
Require hand-made formulas and scaling
|
|
uDmod1_nlsr::nlxb_08
|
15:36:50.385
|
15:36:50.463
|
0.078
|
0.0465
|
0.0390
|
**
|
maxiter = 150
|
Require hand-made formulas and scaling
|
|
uDmod1_nlsr::nlxb_09
|
15:36:50.478
|
15:36:50.556
|
0.078
|
0.1012
|
0.0823
|
**
|
maxiter = 150
|
Require hand-made formulas and scaling
|
|
uDmod1_nlsr::nlxb_10
|
15:36:50.556
|
15:36:50.635
|
0.079
|
0.0469
|
0.0393
|
**
|
maxiter = 150
|
Require hand-made formulas and scaling
|
|
uDmod1_minpacklm::nlsLM_01
|
15:46:29.085
|
15:46:29.147
|
0.062
|
0.0433
|
0.0350
|
**
|
maxiter = 150
|
Require hand-made formulas and scaling
|
|
uDmod1_minpacklm::nlsLM_02
|
15:46:29.147
|
15:46:29.194
|
0.047
|
0.5884
|
0.5069
|
**
|
maxiter = 150
|
Require hand-made formulas and scaling
|
|
uDmod1_minpacklm::nlsLM_03
|
15:46:29.194
|
15:46:29.241
|
0.047
|
0.0433
|
0.0349
|
**
|
maxiter = 150
|
Require hand-made formulas and scaling
|
|
uDmod1_minpacklm::nlsLM_04
|
15:46:29.241
|
15:46:29.303
|
0.062
|
0.0418
|
0.0326
|
**
|
maxiter = 150
|
Require hand-made formulas and scaling
|
|
uDmod1_minpacklm::nlsLM_05
|
15:46:29.303
|
15:46:29.350
|
0.047
|
0.0440
|
0.0355
|
**
|
maxiter = 150
|
Require hand-made formulas and scaling
|
|
uDmod1_minpacklm::nlsLM_06
|
15:46:29.350
|
15:46:29.413
|
0.063
|
0.0475
|
0.0383
|
**
|
maxiter = 150
|
Require hand-made formulas and scaling
|
|
uDmod1_minpacklm::nlsLM_07
|
15:46:29.413
|
15:46:29.460
|
0.047
|
0.0797
|
0.0598
|
**
|
maxiter = 150
|
Require hand-made formulas and scaling
|
|
uDmod1_minpacklm::nlsLM_08
|
15:46:29.460
|
15:46:29.507
|
0.047
|
0.5884
|
0.5069
|
**
|
maxiter = 150
|
Require hand-made formulas and scaling
|
|
uDmod1_minpacklm::nlsLM_09
|
15:46:29.507
|
15:46:29.569
|
0.062
|
0.0733
|
0.0533
|
**
|
maxiter = 150
|
Require hand-made formulas and scaling
|
|
uDmod1_minpacklm::nlsLM_10
|
15:46:29.569
|
15:46:29.616
|
0.047
|
0.0433
|
0.0349
|
**
|
maxiter = 150
|
Require hand-made formulas and scaling
|
|
uDmod1_h2o::h2o.deeplearning_01
|
15:54:04.748
|
15:54:05.311
|
0.563
|
0.3880
|
0.3357
|
|
maxiter=200
|
Bad on univariate datasets
|
|
uDmod1_h2o::h2o.deeplearning_02
|
15:54:05.311
|
15:54:05.936
|
0.625
|
0.2428
|
0.1958
|
|
maxiter=200
|
Bad on univariate datasets
|
|
uDmod1_h2o::h2o.deeplearning_03
|
15:54:05.936
|
15:54:06.483
|
0.547
|
0.3503
|
0.2783
|
|
maxiter=200
|
Bad on univariate datasets
|
|
uDmod1_h2o::h2o.deeplearning_04
|
15:54:06.483
|
15:54:06.967
|
0.484
|
0.3051
|
0.2466
|
|
maxiter=200
|
Bad on univariate datasets
|
|
uDmod1_h2o::h2o.deeplearning_05
|
15:54:06.967
|
15:54:07.560
|
0.593
|
0.3784
|
0.3125
|
|
maxiter=200
|
Bad on univariate datasets
|
|
uDmod1_h2o::h2o.deeplearning_06
|
15:54:07.560
|
15:54:08.060
|
0.500
|
0.3151
|
0.2672
|
|
maxiter=200
|
Bad on univariate datasets
|
|
uDmod1_h2o::h2o.deeplearning_07
|
15:54:08.060
|
15:54:08.560
|
0.500
|
0.3740
|
0.3073
|
|
maxiter=200
|
Bad on univariate datasets
|
|
uDmod1_h2o::h2o.deeplearning_08
|
15:54:08.560
|
15:54:09.138
|
0.578
|
0.3766
|
0.3139
|
|
maxiter=200
|
Bad on univariate datasets
|
|
uDmod1_h2o::h2o.deeplearning_09
|
15:54:09.138
|
15:54:09.716
|
0.578
|
0.3696
|
0.3204
|
|
maxiter=200
|
Bad on univariate datasets
|
|
uDmod1_h2o::h2o.deeplearning_10
|
15:54:09.716
|
15:54:10.294
|
0.578
|
0.3856
|
0.3063
|
|
maxiter=200
|
Bad on univariate datasets
|
|
uDmod1_neuralnet::neuralnet_rprop+_01
|
18:10:38.981
|
18:10:40.012
|
1.031
|
0.0604
|
0.0458
|
|
|
Erratic on difficult datasets
|
|
uDmod1_neuralnet::neuralnet_rprop+_02
|
18:10:40.012
|
18:10:41.699
|
1.687
|
0.0615
|
0.0472
|
|
|
Erratic on difficult datasets
|
|
uDmod1_neuralnet::neuralnet_rprop+_03
|
18:10:41.699
|
18:10:42.402
|
0.703
|
0.0469
|
0.0380
|
|
|
Erratic on difficult datasets
|
|
uDmod1_neuralnet::neuralnet_rprop+_04
|
18:10:42.402
|
18:10:43.402
|
1.000
|
0.0493
|
0.0395
|
|
|
Erratic on difficult datasets
|
|
uDmod1_neuralnet::neuralnet_rprop+_05
|
18:10:43.402
|
18:10:44.261
|
0.859
|
0.0616
|
0.0473
|
|
|
Erratic on difficult datasets
|
|
uDmod1_neuralnet::neuralnet_backprop_01
|
21:17:55.218
|
21:18:01.389
|
6.171
|
0.5884
|
0.5069
|
|
|
Fails on difficult datasets
|
|
uDmod1_neuralnet::neuralnet_backprop_02
|
21:18:01.389
|
21:18:07.512
|
6.123
|
0.5884
|
0.5069
|
|
|
Fails on difficult datasets
|
|
uDmod1_neuralnet::neuralnet_backprop_03
|
21:18:07.512
|
21:18:13.558
|
6.046
|
0.5884
|
0.5069
|
|
|
Fails on difficult datasets
|
|
uDmod1_neuralnet::neuralnet_backprop_04
|
21:18:13.558
|
21:18:19.603
|
6.045
|
0.5884
|
0.5069
|
|
|
Fails on difficult datasets
|
|
uDmod1_neuralnet::neuralnet_backprop_05
|
21:18:19.603
|
21:18:25.695
|
6.092
|
0.5884
|
0.5069
|
|
|
Fails on difficult datasets
|
|
uDmod1_brnn::brnn_gaussNewton_01
|
10:21:53.726
|
10:21:53.742
|
0.016
|
0.5885
|
0.5088
|
***
|
|
Different NN
|
|
uDmod1_brnn::brnn_gaussNewton_02
|
10:21:53.742
|
10:21:53.758
|
0.016
|
0.5885
|
0.5088
|
***
|
|
Different NN
|
|
uDmod1_brnn::brnn_gaussNewton_03
|
10:21:53.758
|
10:21:53.758
|
0.000
|
0.5885
|
0.5088
|
***
|
|
Different NN
|
|
uDmod1_brnn::brnn_gaussNewton_04
|
10:21:53.758
|
10:21:53.773
|
0.015
|
0.3340
|
0.2909
|
***
|
|
Different NN
|
|
uDmod1_brnn::brnn_gaussNewton_05
|
10:21:53.773
|
10:21:53.820
|
0.047
|
0.0726
|
0.0559
|
***
|
|
Different NN
|
|
uDmod1_brnn::brnn_gaussNewton_06
|
10:21:53.820
|
10:21:53.851
|
0.031
|
0.1172
|
0.0908
|
***
|
|
Different NN
|
|
uDmod1_brnn::brnn_gaussNewton_07
|
10:21:53.851
|
10:21:53.851
|
0.000
|
0.5885
|
0.5088
|
***
|
|
Different NN
|
|
uDmod1_brnn::brnn_gaussNewton_08
|
10:21:53.851
|
10:21:53.883
|
0.032
|
0.0603
|
0.0449
|
***
|
|
Different NN
|
|
uDmod1_brnn::brnn_gaussNewton_09
|
10:21:53.883
|
10:21:53.914
|
0.031
|
0.0455
|
0.0365
|
***
|
|
Different NN
|
|
uDmod1_brnn::brnn_gaussNewton_10
|
10:21:53.914
|
10:21:53.945
|
0.031
|
0.1164
|
0.0898
|
***
|
|
Different NN
|
|
uDmod1_AMORE::train_ADAPTgd_01
|
13:56:35.894
|
13:56:36.035
|
0.141
|
0.1487
|
0.1147
|
|
iter=3500 lr=0.01
|
Require scaling
|
|
uDmod1_AMORE::train_ADAPTgd_02
|
13:56:36.035
|
13:56:36.175
|
0.140
|
0.1300
|
0.1093
|
|
iter=3500 lr=0.01
|
Require scaling
|
|
uDmod1_AMORE::train_ADAPTgd_03
|
13:56:36.175
|
13:56:36.332
|
0.157
|
0.1102
|
0.0913
|
|
iter=3500 lr=0.01
|
Require scaling
|
|
uDmod1_AMORE::train_ADAPTgd_04
|
13:56:36.332
|
13:56:36.472
|
0.140
|
0.1812
|
0.1237
|
|
iter=3500 lr=0.01
|
Require scaling
|
|
uDmod1_AMORE::train_ADAPTgd_05
|
13:56:36.472
|
13:56:36.628
|
0.156
|
0.1617
|
0.1094
|
|
iter=3500 lr=0.01
|
Require scaling
|
|
uDmod1_AMORE::train_ADAPTgd_06
|
13:56:36.628
|
13:56:36.785
|
0.157
|
0.1736
|
0.1241
|
|
iter=3500 lr=0.01
|
Require scaling
|
|
uDmod1_AMORE::train_ADAPTgd_07
|
13:56:36.785
|
13:56:36.937
|
0.152
|
0.1962
|
0.1379
|
|
iter=3500 lr=0.01
|
Require scaling
|
|
uDmod1_AMORE::train_ADAPTgd_08
|
13:56:36.937
|
13:56:37.092
|
0.155
|
0.1366
|
0.1100
|
|
iter=3500 lr=0.01
|
Require scaling
|
|
uDmod1_AMORE::train_ADAPTgd_09
|
13:56:37.092
|
13:56:37.244
|
0.152
|
0.1247
|
0.1027
|
|
iter=3500 lr=0.01
|
Require scaling
|
|
uDmod1_AMORE::train_ADAPTgd_10
|
13:56:37.244
|
13:56:37.385
|
0.141
|
0.1717
|
0.1157
|
|
iter=3500 lr=0.01
|
Require scaling
|
|
uDmod1_AMORE::train_ADAPTgdwm_01
|
14:16:29.382
|
14:16:29.913
|
0.531
|
0.1034
|
0.0847
|
|
iter=10000 lr=0.009 momentum=0.8 sigmoid
|
|
|
uDmod1_AMORE::train_ADAPTgdwm_02
|
14:16:29.913
|
14:16:30.444
|
0.531
|
0.1394
|
0.1006
|
|
iter=10000 lr=0.009 momentum=0.8 sigmoid
|
|
|
uDmod1_AMORE::train_ADAPTgdwm_03
|
14:16:30.444
|
14:16:30.975
|
0.531
|
0.0950
|
0.0811
|
|
iter=10000 lr=0.009 momentum=0.8 sigmoid
|
|
|
uDmod1_AMORE::train_ADAPTgdwm_04
|
14:16:30.975
|
14:16:31.507
|
0.532
|
0.0949
|
0.0798
|
|
iter=10000 lr=0.009 momentum=0.8 sigmoid
|
|
|
uDmod1_AMORE::train_ADAPTgdwm_05
|
14:16:31.507
|
14:16:32.038
|
0.531
|
0.0998
|
0.0838
|
|
iter=10000 lr=0.009 momentum=0.8 sigmoid
|
|
|
uDmod1_AMORE::train_ADAPTgdwm_06
|
14:16:32.038
|
14:16:32.569
|
0.531
|
0.1079
|
0.0870
|
|
iter=10000 lr=0.009 momentum=0.8 sigmoid
|
|
|
uDmod1_AMORE::train_ADAPTgdwm_07
|
14:16:32.569
|
14:16:33.131
|
0.562
|
0.1383
|
0.0981
|
|
iter=10000 lr=0.009 momentum=0.8 sigmoid
|
|
|
uDmod1_AMORE::train_ADAPTgdwm_08
|
14:16:33.147
|
14:16:33.662
|
0.515
|
0.1006
|
0.0829
|
|
iter=10000 lr=0.009 momentum=0.8 sigmoid
|
|
|
uDmod1_AMORE::train_ADAPTgdwm_09
|
14:16:33.662
|
14:16:34.193
|
0.531
|
0.1169
|
0.0954
|
|
iter=10000 lr=0.009 momentum=0.8 sigmoid
|
|
|
uDmod1_AMORE::train_ADAPTgdwm_10
|
14:16:34.193
|
14:16:34.709
|
0.516
|
0.1101
|
0.0921
|
|
iter=10000 lr=0.009 momentum=0.8 sigmoid
|
|
|
uDmod1_AMORE::train_BATCHgd_01
|
14:36:31.616
|
14:36:33.244
|
1.628
|
0.5136
|
0.4504
|
|
iter=7500 lr=0.05 sigmoid
|
very bad
|
|
uDmod1_AMORE::train_BATCHgd_02
|
14:36:33.244
|
14:36:34.835
|
1.591
|
0.4972
|
0.4339
|
|
iter=7500 lr=0.05 sigmoid
|
very bad
|
|
uDmod1_AMORE::train_BATCHgd_03
|
14:36:34.835
|
14:36:36.290
|
1.455
|
0.5132
|
0.4508
|
|
iter=7500 lr=0.05 sigmoid
|
very bad
|
|
uDmod1_AMORE::train_BATCHgd_04
|
14:36:36.290
|
14:36:37.542
|
1.252
|
0.5674
|
0.5073
|
|
iter=7500 lr=0.05 sigmoid
|
very bad
|
|
uDmod1_AMORE::train_BATCHgd_05
|
14:36:37.542
|
14:36:38.807
|
1.265
|
0.4722
|
0.4093
|
|
iter=7500 lr=0.05 sigmoid
|
very bad
|
|
uDmod1_AMORE::train_BATCHgdwm_01
|
15:03:29.098
|
15:03:32.286
|
3.188
|
0.5792
|
0.5167
|
|
iter=9000 lr=0.008 momentum=0.7 tansig
|
Bad and no example
|
|
uDmod1_AMORE::train_BATCHgdwm_02
|
15:03:32.286
|
15:03:35.281
|
2.995
|
0.5754
|
0.5144
|
|
iter=9000 lr=0.008 momentum=0.7 tansig
|
Bad and no example
|
|
uDmod1_AMORE::train_BATCHgdwm_03
|
15:03:35.281
|
15:03:38.228
|
2.947
|
0.5743
|
0.5138
|
|
iter=9000 lr=0.008 momentum=0.7 tansig
|
Bad and no example
|
|
uDmod1_AMORE::train_BATCHgdwm_04
|
15:03:38.228
|
15:03:41.316
|
3.088
|
0.5800
|
0.5168
|
|
iter=9000 lr=0.008 momentum=0.7 tansig
|
Bad and no example
|
|
uDmod1_AMORE::train_BATCHgdwm_05
|
15:03:41.316
|
15:03:44.318
|
3.002
|
0.5794
|
0.5169
|
|
iter=9000 lr=0.008 momentum=0.7 tansig
|
Bad and no example
|
|
uDmod1_ANN2::neuralnetwork_sgd_01
|
16:27:43.593
|
16:27:43.655
|
0.062
|
0.3381
|
0.2867
|
|
iter=4000 lr=0.01
|
Require fine tuning
|
|
uDmod1_ANN2::neuralnetwork_sgd_02
|
16:27:43.655
|
16:27:43.718
|
0.063
|
0.3319
|
0.2894
|
|
iter=4000 lr=0.01
|
Require fine tuning
|
|
uDmod1_ANN2::neuralnetwork_sgd_03
|
16:27:43.718
|
16:27:43.780
|
0.062
|
0.3326
|
0.2900
|
|
iter=4000 lr=0.01
|
Require fine tuning
|
|
uDmod1_ANN2::neuralnetwork_sgd_04
|
16:27:43.796
|
16:27:43.858
|
0.062
|
0.2016
|
0.1621
|
|
iter=4000 lr=0.01
|
Require fine tuning
|
|
uDmod1_ANN2::neuralnetwork_sgd_05
|
16:27:43.858
|
16:27:43.921
|
0.063
|
0.2065
|
0.1621
|
|
iter=4000 lr=0.01
|
Require fine tuning
|
|
uDmod1_ANN2::neuralnetwork_sgd_06
|
16:27:43.937
|
16:27:43.999
|
0.062
|
0.2047
|
0.1608
|
|
iter=4000 lr=0.01
|
Require fine tuning
|
|
uDmod1_ANN2::neuralnetwork_sgd_07
|
16:27:44.015
|
16:27:44.077
|
0.062
|
0.2049
|
0.1600
|
|
iter=4000 lr=0.01
|
Require fine tuning
|
|
uDmod1_ANN2::neuralnetwork_sgd_08
|
16:27:44.077
|
16:27:44.140
|
0.063
|
0.3399
|
0.2990
|
|
iter=4000 lr=0.01
|
Require fine tuning
|
|
uDmod1_ANN2::neuralnetwork_sgd_09
|
16:27:44.140
|
16:27:44.218
|
0.078
|
0.3343
|
0.2928
|
|
iter=4000 lr=0.01
|
Require fine tuning
|
|
uDmod1_ANN2::neuralnetwork_sgd_10
|
16:27:44.218
|
16:27:44.280
|
0.062
|
0.2063
|
0.1634
|
|
iter=4000 lr=0.01
|
Require fine tuning
|
|
uDmod1_ANN2::neuralnetwork_adam_01
|
16:35:22.249
|
16:35:22.326
|
0.077
|
0.1481
|
0.1166
|
|
iter=4000 lr=0.02
|
Require fine tuning
|
|
uDmod1_ANN2::neuralnetwork_adam_02
|
16:35:22.328
|
16:35:22.403
|
0.075
|
0.2052
|
0.1609
|
|
iter=4000 lr=0.02
|
Require fine tuning
|
|
uDmod1_ANN2::neuralnetwork_adam_03
|
16:35:22.405
|
16:35:22.482
|
0.077
|
0.2000
|
0.1599
|
|
iter=4000 lr=0.02
|
Require fine tuning
|
|
uDmod1_ANN2::neuralnetwork_adam_04
|
16:35:22.484
|
16:35:22.559
|
0.075
|
0.1813
|
0.1488
|
|
iter=4000 lr=0.02
|
Require fine tuning
|
|
uDmod1_ANN2::neuralnetwork_adam_05
|
16:35:22.561
|
16:35:22.638
|
0.077
|
0.3380
|
0.2870
|
|
iter=4000 lr=0.02
|
Require fine tuning
|
|
uDmod1_ANN2::neuralnetwork_adam_06
|
16:35:22.640
|
16:35:22.717
|
0.077
|
0.1670
|
0.1336
|
|
iter=4000 lr=0.02
|
Require fine tuning
|
|
uDmod1_ANN2::neuralnetwork_adam_07
|
16:35:22.719
|
16:35:22.794
|
0.075
|
0.1987
|
0.1559
|
|
iter=4000 lr=0.02
|
Require fine tuning
|
|
uDmod1_ANN2::neuralnetwork_adam_08
|
16:35:22.797
|
16:35:22.873
|
0.076
|
0.1846
|
0.1521
|
|
iter=4000 lr=0.02
|
Require fine tuning
|
|
uDmod1_ANN2::neuralnetwork_adam_09
|
16:35:22.875
|
16:35:22.951
|
0.076
|
0.1306
|
0.1072
|
|
iter=4000 lr=0.02
|
Require fine tuning
|
|
uDmod1_ANN2::neuralnetwork_adam_10
|
16:35:22.953
|
16:35:23.023
|
0.070
|
0.3344
|
0.2877
|
|
iter=4000 lr=0.02
|
Require fine tuning
|
|
uDmod1_ANN2::neuralnetwork_rmsprop_01
|
16:41:45.528
|
16:41:45.590
|
0.062
|
0.3447
|
0.2967
|
|
iter=4000 lr=0.03
|
Erratic
|
|
uDmod1_ANN2::neuralnetwork_rmsprop_02
|
16:41:45.590
|
16:41:45.653
|
0.063
|
0.2279
|
0.1846
|
|
iter=4000 lr=0.03
|
Erratic
|
|
uDmod1_ANN2::neuralnetwork_rmsprop_03
|
16:41:45.669
|
16:41:45.731
|
0.062
|
0.2011
|
0.1592
|
|
iter=4000 lr=0.03
|
Erratic
|
|
uDmod1_ANN2::neuralnetwork_rmsprop_04
|
16:41:45.731
|
16:41:45.793
|
0.062
|
0.3362
|
0.2926
|
|
iter=4000 lr=0.03
|
Erratic
|
|
uDmod1_ANN2::neuralnetwork_rmsprop_05
|
16:41:45.793
|
16:41:45.872
|
0.079
|
0.1988
|
0.1580
|
|
iter=4000 lr=0.03
|
Erratic
|
|
uDmod1_ANN2::neuralnetwork_rmsprop_06
|
16:41:45.887
|
16:41:45.950
|
0.063
|
0.3377
|
0.2951
|
|
iter=4000 lr=0.03
|
Erratic
|
|
uDmod1_ANN2::neuralnetwork_rmsprop_07
|
16:41:45.950
|
16:41:46.012
|
0.062
|
0.2090
|
0.1654
|
|
iter=4000 lr=0.03
|
Erratic
|
|
uDmod1_ANN2::neuralnetwork_rmsprop_08
|
16:41:46.012
|
16:41:46.090
|
0.078
|
0.1834
|
0.1416
|
|
iter=4000 lr=0.03
|
Erratic
|
|
uDmod1_ANN2::neuralnetwork_rmsprop_09
|
16:41:46.090
|
16:41:46.153
|
0.063
|
0.1703
|
0.1331
|
|
iter=4000 lr=0.03
|
Erratic
|
|
uDmod1_ANN2::neuralnetwork_rmsprop_10
|
16:41:46.168
|
16:41:46.231
|
0.063
|
0.2080
|
0.1657
|
|
iter=4000 lr=0.03
|
Erratic
|
|
uDmod1_deepnet::gradientdescent_01
|
17:29:50.544
|
17:29:50.669
|
0.125
|
0.2715
|
0.2264
|
|
numepochs=1000
|
Bad on univariate datasets
|
|
uDmod1_deepnet::gradientdescent_02
|
17:29:50.669
|
17:29:50.794
|
0.125
|
0.3373
|
0.2886
|
|
numepochs=1000
|
Bad on univariate datasets
|
|
uDmod1_deepnet::gradientdescent_03
|
17:29:50.794
|
17:29:50.919
|
0.125
|
0.2886
|
0.2362
|
|
numepochs=1000
|
Bad on univariate datasets
|
|
uDmod1_deepnet::gradientdescent_04
|
17:29:50.919
|
17:29:51.044
|
0.125
|
0.3009
|
0.2505
|
|
numepochs=1000
|
Bad on univariate datasets
|
|
uDmod1_deepnet::gradientdescent_05
|
17:29:51.044
|
17:29:51.169
|
0.125
|
0.2961
|
0.2528
|
|
numepochs=1000
|
Bad on univariate datasets
|
|
uDmod1_deepnet::gradientdescent_06
|
17:29:51.169
|
17:29:51.294
|
0.125
|
0.2654
|
0.2177
|
|
numepochs=1000
|
Bad on univariate datasets
|
|
uDmod1_deepnet::gradientdescent_07
|
17:29:51.310
|
17:29:51.435
|
0.125
|
0.2938
|
0.2382
|
|
numepochs=1000
|
Bad on univariate datasets
|
|
uDmod1_deepnet::gradientdescent_08
|
17:29:51.435
|
17:29:51.560
|
0.125
|
0.2959
|
0.2524
|
|
numepochs=1000
|
Bad on univariate datasets
|
|
uDmod1_deepnet::gradientdescent_09
|
17:29:51.560
|
17:29:51.685
|
0.125
|
0.2569
|
0.2049
|
|
numepochs=1000
|
Bad on univariate datasets
|
|
uDmod1_deepnet::gradientdescent_10
|
17:29:51.685
|
17:29:51.810
|
0.125
|
0.3055
|
0.2500
|
|
numepochs=1000
|
Bad on univariate datasets
|
|
uDmod1_MachineShop::fit.NNetModel_01
|
03:19:13.206
|
03:19:13.223
|
0.017
|
0.1133
|
0.0713
|
|
maxiter = 150
|
uses nnet
|
|
uDmod1_MachineShop::fit.NNetModel_02
|
03:19:13.223
|
03:19:13.223
|
0.000
|
0.0627
|
0.0503
|
|
maxiter = 150
|
uses nnet
|
|
uDmod1_MachineShop::fit.NNetModel_03
|
03:19:13.239
|
03:19:13.239
|
0.000
|
0.0449
|
0.0368
|
|
maxiter = 150
|
uses nnet
|
|
uDmod1_MachineShop::fit.NNetModel_04
|
03:19:13.239
|
03:19:13.257
|
0.018
|
0.0928
|
0.0667
|
|
maxiter = 150
|
uses nnet
|
|
uDmod1_MachineShop::fit.NNetModel_05
|
03:19:13.258
|
03:19:13.267
|
0.009
|
0.0645
|
0.0513
|
|
maxiter = 150
|
uses nnet
|
|
uDmod1_MachineShop::fit.NNetModel_06
|
03:19:13.269
|
03:19:13.276
|
0.007
|
0.1114
|
0.0833
|
|
maxiter = 150
|
uses nnet
|
|
uDmod1_MachineShop::fit.NNetModel_07
|
03:19:13.276
|
03:19:13.276
|
0.000
|
0.0963
|
0.0758
|
|
maxiter = 150
|
uses nnet
|
|
uDmod1_MachineShop::fit.NNetModel_08
|
03:19:13.276
|
03:19:13.291
|
0.015
|
0.0443
|
0.0365
|
|
maxiter = 150
|
uses nnet
|
|
uDmod1_MachineShop::fit.NNetModel_09
|
03:19:13.291
|
03:19:13.291
|
0.000
|
0.0660
|
0.0533
|
|
maxiter = 150
|
uses nnet
|
|
uDmod1_MachineShop::fit.NNetModel_10
|
03:19:13.307
|
03:19:13.307
|
0.000
|
0.0447
|
0.0363
|
|
maxiter = 150
|
uses nnet
|
|
uDmod1_momlp::monmlp.fit_BFGS_01
|
03:19:58.197
|
03:19:58.396
|
0.199
|
0.0557
|
0.0451
|
|
maxiter = 300
|
uses optimx
|
|
uDmod1_momlp::monmlp.fit_BFGS_02
|
03:19:58.396
|
03:19:58.597
|
0.201
|
0.0520
|
0.0412
|
|
maxiter = 300
|
uses optimx
|
|
uDmod1_momlp::monmlp.fit_BFGS_03
|
03:19:58.598
|
03:19:58.812
|
0.214
|
0.0503
|
0.0411
|
|
maxiter = 300
|
uses optimx
|
|
uDmod1_momlp::monmlp.fit_BFGS_04
|
03:19:58.814
|
03:19:59.027
|
0.213
|
0.1029
|
0.0834
|
|
maxiter = 300
|
uses optimx
|
|
uDmod1_momlp::monmlp.fit_BFGS_05
|
03:19:59.028
|
03:19:59.221
|
0.193
|
0.0905
|
0.0697
|
|
maxiter = 300
|
uses optimx
|
|
uDmod1_momlp::monmlp.fit_BFGS_06
|
03:19:59.222
|
03:19:59.388
|
0.166
|
0.0877
|
0.0654
|
|
maxiter = 300
|
uses optimx
|
|
uDmod1_momlp::monmlp.fit_BFGS_07
|
03:19:59.390
|
03:19:59.568
|
0.178
|
0.0502
|
0.0400
|
|
maxiter = 300
|
uses optimx
|
|
uDmod1_momlp::monmlp.fit_BFGS_08
|
03:19:59.568
|
03:19:59.726
|
0.158
|
0.0636
|
0.0491
|
|
maxiter = 300
|
uses optimx
|
|
uDmod1_momlp::monmlp.fit_BFGS_09
|
03:19:59.726
|
03:19:59.912
|
0.186
|
0.0659
|
0.0515
|
|
maxiter = 300
|
uses optimx
|
|
uDmod1_momlp::monmlp.fit_BFGS_10
|
03:19:59.913
|
03:20:00.078
|
0.165
|
0.0504
|
0.0405
|
|
maxiter = 300
|
uses optimx
|
|
uDmod1_momlp::monmlp.fit_Nelder-Mead_01
|
03:21:00.058
|
03:21:00.337
|
0.279
|
0.2013
|
0.1628
|
|
maxiter = 10000
|
uses optimx
|
|
uDmod1_momlp::monmlp.fit_Nelder-Mead_02
|
03:21:00.337
|
03:21:00.679
|
0.342
|
0.1722
|
0.1318
|
|
maxiter = 10000
|
uses optimx
|
|
uDmod1_momlp::monmlp.fit_Nelder-Mead_03
|
03:21:00.695
|
03:21:01.068
|
0.373
|
0.2230
|
0.1769
|
|
maxiter = 10000
|
uses optimx
|
|
uDmod1_momlp::monmlp.fit_Nelder-Mead_04
|
03:21:01.069
|
03:21:01.387
|
0.318
|
0.2177
|
0.1694
|
|
maxiter = 10000
|
uses optimx
|
|
uDmod1_momlp::monmlp.fit_Nelder-Mead_05
|
03:21:01.387
|
03:21:01.717
|
0.330
|
0.2824
|
0.2180
|
|
maxiter = 10000
|
uses optimx
|
|
uDmod1_momlp::monmlp.fit_Nelder-Mead_06
|
03:21:01.717
|
03:21:02.075
|
0.358
|
0.1471
|
0.1172
|
|
maxiter = 10000
|
uses optimx
|
|
uDmod1_momlp::monmlp.fit_Nelder-Mead_07
|
03:21:02.075
|
03:21:02.403
|
0.328
|
0.2066
|
0.1492
|
|
maxiter = 10000
|
uses optimx
|
|
uDmod1_momlp::monmlp.fit_Nelder-Mead_08
|
03:21:02.403
|
03:21:02.755
|
0.352
|
0.2237
|
0.1817
|
|
maxiter = 10000
|
uses optimx
|
|
uDmod1_momlp::monmlp.fit_Nelder-Mead_09
|
03:21:02.755
|
03:21:03.022
|
0.267
|
0.2876
|
0.2455
|
|
maxiter = 10000
|
uses optimx
|
|
uDmod1_momlp::monmlp.fit_Nelder-Mead_10
|
03:21:03.022
|
03:21:03.368
|
0.346
|
0.1639
|
0.1310
|
|
maxiter = 10000
|
uses optimx
|
|
uDmod1_neural::mlptrain_01
|
03:41:46.534
|
03:41:51.499
|
4.965
|
0.4647
|
0.3589
|
|
maxiter = 1000
|
classification
|
|
uDmod1_neural::mlptrain_02
|
03:41:51.499
|
03:41:56.442
|
4.943
|
0.4647
|
0.3582
|
|
maxiter = 1000
|
classification
|
|
uDmod1_neural::mlptrain_03
|
03:41:56.442
|
03:42:01.338
|
4.896
|
0.4647
|
0.3594
|
|
maxiter = 1000
|
classification
|
|
uDmod1_neural::mlptrain_04
|
03:42:01.353
|
03:42:06.289
|
4.936
|
0.4647
|
0.3592
|
|
maxiter = 1000
|
classification
|
|
uDmod1_neural::mlptrain_05
|
03:42:06.289
|
03:42:11.354
|
5.065
|
0.4647
|
0.3583
|
|
maxiter = 1000
|
classification
|
|
uDmod1_neuralnet::neuralnet_backprop_01
|
03:52:09.894
|
03:52:14.210
|
4.316
|
0.5884
|
0.5069
|
|
|
Fails on difficult datasets
|
|
uDmod1_neuralnet::neuralnet_backprop_02
|
03:52:14.211
|
03:52:18.614
|
4.403
|
0.5884
|
0.5069
|
|
|
Fails on difficult datasets
|
|
uDmod1_neuralnet::neuralnet_backprop_03
|
03:52:18.615
|
03:52:22.875
|
4.260
|
0.5884
|
0.5069
|
|
|
Fails on difficult datasets
|
|
uDmod1_neuralnet::neuralnet_backprop_04
|
03:52:22.891
|
03:52:27.134
|
4.243
|
0.5884
|
0.5069
|
|
|
Fails on difficult datasets
|
|
uDmod1_neuralnet::neuralnet_backprop_05
|
03:52:27.150
|
03:52:31.408
|
4.258
|
0.5884
|
0.5069
|
|
|
Fails on difficult datasets
|
|
uDmod1_neuralnet::neuralnet_rprop-_01
|
03:58:52.308
|
03:58:53.439
|
1.131
|
0.0614
|
0.0469
|
|
|
Erratic on multivariate datasets
|
|
uDmod1_neuralnet::neuralnet_rprop-_02
|
03:58:53.439
|
03:58:55.384
|
1.945
|
0.0505
|
0.0422
|
|
|
Erratic on multivariate datasets
|
|
uDmod1_neuralnet::neuralnet_rprop-_03
|
03:58:55.384
|
03:58:57.662
|
2.278
|
0.0511
|
0.0413
|
|
|
Erratic on multivariate datasets
|
|
uDmod1_neuralnet::neuralnet_rprop-_04
|
03:58:57.663
|
03:58:59.247
|
1.584
|
0.0619
|
0.0496
|
|
|
Erratic on multivariate datasets
|
|
uDmod1_neuralnet::neuralnet_rprop-_05
|
03:58:59.249
|
03:59:00.497
|
1.248
|
0.0468
|
0.0384
|
|
|
Erratic on multivariate datasets
|
|
uDmod1_neuralnet::neuralnet_sag_01
|
04:11:20.663
|
04:11:26.040
|
5.377
|
0.5884
|
0.5069
|
|
|
|
|
uDmod1_neuralnet::neuralnet_sag_02
|
04:11:26.040
|
04:11:31.529
|
5.489
|
0.5884
|
0.5069
|
|
|
|
|
uDmod1_neuralnet::neuralnet_sag_03
|
04:11:31.529
|
04:11:37.130
|
5.601
|
0.5884
|
0.5069
|
|
|
|
|
uDmod1_neuralnet::neuralnet_sag_04
|
04:11:37.130
|
04:11:42.512
|
5.382
|
0.5884
|
0.5069
|
|
|
|
|
uDmod1_neuralnet::neuralnet_sag_05
|
04:11:42.512
|
04:11:47.945
|
5.433
|
0.5884
|
0.5069
|
|
|
|
|
uDmod1_neuralnet::neuralnet_slr_01
|
04:19:14.053
|
04:19:14.378
|
0.325
|
0.0602
|
0.0456
|
|
|
|
|
uDmod1_neuralnet::neuralnet_slr_02
|
04:19:14.378
|
04:19:14.966
|
0.588
|
0.0539
|
0.0431
|
|
|
|
|
uDmod1_neuralnet::neuralnet_slr_03
|
04:19:14.966
|
04:19:15.615
|
0.649
|
0.0471
|
0.0382
|
|
|
|
|
uDmod1_neuralnet::neuralnet_slr_04
|
04:19:15.615
|
04:19:19.680
|
4.065
|
0.0588
|
0.0457
|
|
|
|
|
uDmod1_neuralnet::neuralnet_slr_05
|
04:19:19.680
|
04:19:20.949
|
1.269
|
0.0510
|
0.0414
|
|
|
|
|
uDmod1_neuralnet::neuralnet_rprop+_01
|
04:24:31.266
|
04:24:32.040
|
0.774
|
0.0458
|
0.0360
|
|
|
Erratic on difficult datasets
|
|
uDmod1_neuralnet::neuralnet_rprop+_02
|
04:24:32.042
|
04:24:33.620
|
1.578
|
0.0582
|
0.0439
|
|
|
Erratic on difficult datasets
|
|
uDmod1_neuralnet::neuralnet_rprop+_03
|
04:24:33.620
|
04:24:37.195
|
3.575
|
0.1152
|
0.0863
|
|
|
Erratic on difficult datasets
|
|
uDmod1_neuralnet::neuralnet_rprop+_04
|
04:24:37.195
|
04:24:42.531
|
5.336
|
0.5884
|
0.5069
|
|
|
Erratic on difficult datasets
|
|
uDmod1_neuralnet::neuralnet_rprop+_05
|
04:24:42.531
|
04:24:43.894
|
1.363
|
0.0500
|
0.0394
|
|
|
Erratic on difficult datasets
|
|
uDmod1_nnet::nnet_01
|
04:25:32.861
|
04:25:32.868
|
0.007
|
0.0847
|
0.0592
|
|
maxiter = 150
|
uses optim BFGS
|
|
uDmod1_nnet::nnet_02
|
04:25:32.869
|
04:25:32.877
|
0.008
|
0.0451
|
0.0370
|
|
maxiter = 150
|
uses optim BFGS
|
|
uDmod1_nnet::nnet_03
|
04:25:32.878
|
04:25:32.884
|
0.006
|
0.1103
|
0.0703
|
|
maxiter = 150
|
uses optim BFGS
|
|
uDmod1_nnet::nnet_04
|
04:25:32.885
|
04:25:32.892
|
0.007
|
0.0458
|
0.0365
|
|
maxiter = 150
|
uses optim BFGS
|
|
uDmod1_nnet::nnet_05
|
04:25:32.893
|
04:25:32.900
|
0.007
|
0.1667
|
0.1179
|
|
maxiter = 150
|
uses optim BFGS
|
|
uDmod1_nnet::nnet_06
|
04:25:32.902
|
04:25:32.909
|
0.007
|
0.1131
|
0.0812
|
|
maxiter = 150
|
uses optim BFGS
|
|
uDmod1_nnet::nnet_07
|
04:25:32.910
|
04:25:32.918
|
0.008
|
0.0480
|
0.0395
|
|
maxiter = 150
|
uses optim BFGS
|
|
uDmod1_nnet::nnet_08
|
04:25:32.919
|
04:25:32.926
|
0.007
|
0.0442
|
0.0361
|
|
maxiter = 150
|
uses optim BFGS
|
|
uDmod1_nnet::nnet_09
|
04:25:32.928
|
04:25:32.935
|
0.007
|
0.1014
|
0.0792
|
|
maxiter = 150
|
uses optim BFGS
|
|
uDmod1_nnet::nnet_10
|
04:25:32.937
|
04:25:32.944
|
0.007
|
0.0827
|
0.0628
|
|
maxiter = 150
|
uses optim BFGS
|
|
uDmod1_qrnn::qrnn.fit_01
|
04:25:55.062
|
04:25:55.253
|
0.191
|
0.0663
|
0.0448
|
|
maxiter = 700
|
|
|
uDmod1_qrnn::qrnn.fit_02
|
04:25:55.253
|
04:25:55.636
|
0.383
|
0.1365
|
0.0715
|
|
maxiter = 700
|
|
|
uDmod1_qrnn::qrnn.fit_03
|
04:25:55.636
|
04:25:55.835
|
0.199
|
0.0910
|
0.0634
|
|
maxiter = 700
|
|
|
uDmod1_qrnn::qrnn.fit_04
|
04:25:55.835
|
04:25:56.026
|
0.191
|
0.0491
|
0.0326
|
|
maxiter = 700
|
|
|
uDmod1_qrnn::qrnn.fit_05
|
04:25:56.042
|
04:25:56.241
|
0.199
|
0.1353
|
0.0711
|
|
maxiter = 700
|
|
|
uDmod1_qrnn::qrnn.fit_06
|
04:25:56.241
|
04:25:56.474
|
0.233
|
0.1314
|
0.0675
|
|
maxiter = 700
|
|
|
uDmod1_qrnn::qrnn.fit_07
|
04:25:56.474
|
04:25:56.846
|
0.372
|
0.0676
|
0.0434
|
|
maxiter = 700
|
|
|
uDmod1_qrnn::qrnn.fit_08
|
04:25:56.846
|
04:25:57.162
|
0.316
|
0.1164
|
0.0601
|
|
maxiter = 700
|
|
|
uDmod1_qrnn::qrnn.fit_09
|
04:25:57.162
|
04:25:57.550
|
0.388
|
0.0471
|
0.0327
|
|
maxiter = 700
|
|
|
uDmod1_qrnn::qrnn.fit_10
|
04:25:57.550
|
04:25:57.810
|
0.260
|
0.0609
|
0.0382
|
|
maxiter = 700
|
|
|
uDmod1_radiantmodel::radiantmodel_01
|
04:27:35.597
|
04:27:35.634
|
0.037
|
0.1029
|
0.0782
|
|
maxiter=10000 preset
|
uses nnet
|
|
uDmod1_radiantmodel::radiantmodel_02
|
04:27:35.636
|
04:27:35.672
|
0.036
|
0.0456
|
0.0363
|
|
maxiter=10000 preset
|
uses nnet
|
|
uDmod1_radiantmodel::radiantmodel_03
|
04:27:35.673
|
04:27:35.700
|
0.027
|
0.1168
|
0.0786
|
|
maxiter=10000 preset
|
uses nnet
|
|
uDmod1_radiantmodel::radiantmodel_04
|
04:27:35.701
|
04:27:35.733
|
0.032
|
0.1124
|
0.0705
|
|
maxiter=10000 preset
|
uses nnet
|
|
uDmod1_radiantmodel::radiantmodel_05
|
04:27:35.734
|
04:27:35.787
|
0.053
|
0.0433
|
0.0350
|
|
maxiter=10000 preset
|
uses nnet
|
|
uDmod1_radiantmodel::radiantmodel_06
|
04:27:35.788
|
04:27:35.824
|
0.036
|
0.0459
|
0.0363
|
|
maxiter=10000 preset
|
uses nnet
|
|
uDmod1_radiantmodel::radiantmodel_07
|
04:27:35.825
|
04:27:35.865
|
0.040
|
0.0403
|
0.0307
|
|
maxiter=10000 preset
|
uses nnet
|
|
uDmod1_radiantmodel::radiantmodel_08
|
04:27:35.866
|
04:27:35.909
|
0.043
|
0.0433
|
0.0349
|
|
maxiter=10000 preset
|
uses nnet
|
|
uDmod1_radiantmodel::radiantmodel_09
|
04:27:35.910
|
04:27:35.967
|
0.057
|
0.0433
|
0.0349
|
|
maxiter=10000 preset
|
uses nnet
|
|
uDmod1_radiantmodel::radiantmodel_10
|
04:27:35.967
|
04:27:35.999
|
0.032
|
0.0433
|
0.0350
|
|
maxiter=10000 preset
|
uses nnet
|
|
uDmod1_rcane::rlm_01
|
04:27:45.144
|
04:27:45.145
|
0.001
|
0.5885
|
0.5088
|
|
maxiter = 1000
|
linear only
|
|
uDmod1_rcane::rlm_02
|
04:27:45.147
|
04:27:45.148
|
0.001
|
0.5885
|
0.5088
|
|
maxiter = 1000
|
linear only
|
|
uDmod1_rcane::rlm_03
|
04:27:45.149
|
04:27:45.150
|
0.001
|
0.5885
|
0.5088
|
|
maxiter = 1000
|
linear only
|
|
uDmod1_rcane::rlm_04
|
04:27:45.151
|
04:27:45.152
|
0.001
|
0.5885
|
0.5088
|
|
maxiter = 1000
|
linear only
|
|
uDmod1_rcane::rlm_05
|
04:27:45.153
|
04:27:45.154
|
0.001
|
0.5885
|
0.5088
|
|
maxiter = 1000
|
linear only
|
|
uDmod1_rcane::rlm_06
|
04:27:45.156
|
04:27:45.158
|
0.002
|
0.5885
|
0.5088
|
|
maxiter = 1000
|
linear only
|
|
uDmod1_rcane::rlm_07
|
04:27:45.158
|
04:27:45.158
|
0.000
|
0.5885
|
0.5088
|
|
maxiter = 1000
|
linear only
|
|
uDmod1_rcane::rlm_08
|
04:27:45.158
|
04:27:45.158
|
0.000
|
0.5885
|
0.5088
|
|
maxiter = 1000
|
linear only
|
|
uDmod1_rcane::rlm_09
|
04:27:45.158
|
04:27:45.158
|
0.000
|
0.5885
|
0.5088
|
|
maxiter = 1000
|
linear only
|
|
uDmod1_rcane::rlm_10
|
04:27:45.158
|
04:27:45.158
|
0.000
|
0.5885
|
0.5088
|
|
maxiter = 1000
|
linear only
|
|
uDmod1_rminer::fit_01
|
04:27:57.919
|
04:27:57.936
|
0.017
|
0.0588
|
0.0434
|
|
maxiter = 150
|
|
|
uDmod1_rminer::fit_02
|
04:27:57.937
|
04:27:57.955
|
0.018
|
0.0445
|
0.0362
|
|
maxiter = 150
|
|
|
uDmod1_rminer::fit_03
|
04:27:57.956
|
04:27:57.974
|
0.018
|
0.0817
|
0.0695
|
|
maxiter = 150
|
|
|
uDmod1_rminer::fit_04
|
04:27:57.975
|
04:27:57.991
|
0.016
|
0.0579
|
0.0475
|
|
maxiter = 150
|
|
|
uDmod1_rminer::fit_05
|
04:27:57.993
|
04:27:58.010
|
0.017
|
0.0458
|
0.0364
|
|
maxiter = 150
|
|
|
uDmod1_rminer::fit_06
|
04:27:58.012
|
04:27:58.030
|
0.018
|
0.0449
|
0.0366
|
|
maxiter = 150
|
|
|
uDmod1_rminer::fit_07
|
04:27:58.031
|
04:27:58.050
|
0.019
|
0.0452
|
0.0358
|
|
maxiter = 150
|
|
|
uDmod1_rminer::fit_08
|
04:27:58.052
|
04:27:58.068
|
0.016
|
0.0469
|
0.0375
|
|
maxiter = 150
|
|
|
uDmod1_rminer::fit_09
|
04:27:58.070
|
04:27:58.089
|
0.019
|
0.0467
|
0.0378
|
|
maxiter = 150
|
|
|
uDmod1_rminer::fit_10
|
04:27:58.090
|
04:27:58.108
|
0.018
|
0.0434
|
0.0341
|
|
maxiter = 150
|
|
|
uDmod1_RSNNS::mlp_BackpropBatch_01
|
04:32:15.327
|
04:32:16.287
|
0.960
|
0.3805
|
0.3333
|
|
maxiter = 10000
|
|
|
uDmod1_RSNNS::mlp_BackpropBatch_02
|
04:32:16.288
|
04:32:17.093
|
0.805
|
0.3194
|
0.2731
|
|
maxiter = 10000
|
|
|
uDmod1_RSNNS::mlp_BackpropBatch_03
|
04:32:17.094
|
04:32:17.896
|
0.802
|
0.3076
|
0.2587
|
|
maxiter = 10000
|
|
|
uDmod1_RSNNS::mlp_BackpropBatch_04
|
04:32:17.896
|
04:32:18.704
|
0.808
|
0.3368
|
0.2916
|
|
maxiter = 10000
|
|
|
uDmod1_RSNNS::mlp_BackpropBatch_05
|
04:32:18.704
|
04:32:19.497
|
0.793
|
0.3328
|
0.2882
|
|
maxiter = 10000
|
|
|
uDmod1_RSNNS::mlp_BackpropBatch_06
|
04:32:19.497
|
04:32:20.444
|
0.947
|
0.2564
|
0.1988
|
|
maxiter = 10000
|
|
|
uDmod1_RSNNS::mlp_BackpropBatch_07
|
04:32:20.444
|
04:32:21.230
|
0.786
|
0.3781
|
0.3317
|
|
maxiter = 10000
|
|
|
uDmod1_RSNNS::mlp_BackpropBatch_08
|
04:32:21.230
|
04:32:22.045
|
0.815
|
0.2913
|
0.2419
|
|
maxiter = 10000
|
|
|
uDmod1_RSNNS::mlp_BackpropBatch_09
|
04:32:22.047
|
04:32:22.832
|
0.785
|
0.3322
|
0.2874
|
|
maxiter = 10000
|
|
|
uDmod1_RSNNS::mlp_BackpropBatch_10
|
04:32:22.832
|
04:32:23.644
|
0.812
|
0.2746
|
0.2243
|
|
maxiter = 10000
|
|
|
uDmod1_RSNNS::mlp_BackpropChunk_01
|
04:34:51.241
|
04:34:51.324
|
0.083
|
0.2654
|
0.2024
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_BackpropChunk_02
|
04:34:51.325
|
04:34:51.407
|
0.082
|
0.1944
|
0.1641
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_BackpropChunk_03
|
04:34:51.407
|
04:34:51.485
|
0.078
|
0.1600
|
0.1188
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_BackpropChunk_04
|
04:34:51.485
|
04:34:51.579
|
0.094
|
0.1599
|
0.1221
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_BackpropChunk_05
|
04:34:51.579
|
04:34:51.822
|
0.243
|
0.2258
|
0.1742
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_BackpropChunk_06
|
04:34:51.822
|
04:34:51.897
|
0.075
|
0.1368
|
0.0923
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_BackpropChunk_07
|
04:34:51.912
|
04:34:51.990
|
0.078
|
0.1924
|
0.1529
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_BackpropChunk_08
|
04:34:51.990
|
04:34:52.068
|
0.078
|
0.1693
|
0.1357
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_BackpropChunk_09
|
04:34:52.084
|
04:34:52.157
|
0.073
|
0.2190
|
0.1725
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_BackpropChunk_10
|
04:34:52.157
|
04:34:52.248
|
0.091
|
0.2115
|
0.1607
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_BackpropMomentum_01
|
04:35:28.577
|
04:35:28.659
|
0.082
|
0.2163
|
0.1720
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_BackpropMomentum_02
|
04:35:28.660
|
04:35:28.747
|
0.087
|
0.1320
|
0.0949
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_BackpropMomentum_03
|
04:35:28.748
|
04:35:28.830
|
0.082
|
0.1634
|
0.1272
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_BackpropMomentum_04
|
04:35:28.831
|
04:35:28.918
|
0.087
|
0.1454
|
0.1022
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_BackpropMomentum_05
|
04:35:28.920
|
04:35:29.007
|
0.087
|
0.1787
|
0.1505
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_BackpropMomentum_06
|
04:35:29.008
|
04:35:29.089
|
0.081
|
0.2018
|
0.1714
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_BackpropMomentum_07
|
04:35:29.091
|
04:35:29.178
|
0.087
|
0.1982
|
0.1536
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_BackpropMomentum_08
|
04:35:29.179
|
04:35:29.261
|
0.082
|
0.2053
|
0.1564
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_BackpropMomentum_09
|
04:35:29.263
|
04:35:29.342
|
0.079
|
0.1701
|
0.1284
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_BackpropMomentum_10
|
04:35:29.342
|
04:35:29.436
|
0.094
|
0.2109
|
0.1597
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_BackpropWeightDecay_01
|
04:36:06.630
|
04:36:06.712
|
0.082
|
0.1976
|
0.1563
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_BackpropWeightDecay_02
|
04:36:06.714
|
04:36:06.791
|
0.077
|
0.1769
|
0.1390
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_BackpropWeightDecay_03
|
04:36:06.791
|
04:36:06.877
|
0.086
|
0.1871
|
0.1533
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_BackpropWeightDecay_04
|
04:36:06.877
|
04:36:06.959
|
0.082
|
0.1423
|
0.1123
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_BackpropWeightDecay_05
|
04:36:06.959
|
04:36:07.053
|
0.094
|
0.1524
|
0.1154
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_BackpropWeightDecay_06
|
04:36:07.053
|
04:36:07.131
|
0.078
|
0.1507
|
0.1133
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_BackpropWeightDecay_07
|
04:36:07.131
|
04:36:07.222
|
0.091
|
0.1310
|
0.0920
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_BackpropWeightDecay_08
|
04:36:07.222
|
04:36:07.316
|
0.094
|
0.1489
|
0.1164
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_BackpropWeightDecay_09
|
04:36:07.316
|
04:36:07.393
|
0.077
|
0.1595
|
0.1153
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_BackpropWeightDecay_10
|
04:36:07.408
|
04:36:07.487
|
0.079
|
0.1557
|
0.1155
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_Quickprop_01
|
04:40:35.840
|
04:40:36.657
|
0.817
|
0.5884
|
0.5068
|
|
maxiter = 10000
|
|
|
uDmod1_RSNNS::mlp_Quickprop_02
|
04:40:36.658
|
04:40:37.596
|
0.938
|
0.5884
|
0.5069
|
|
maxiter = 10000
|
|
|
uDmod1_RSNNS::mlp_Quickprop_03
|
04:40:37.596
|
04:40:38.393
|
0.797
|
0.5884
|
0.5070
|
|
maxiter = 10000
|
|
|
uDmod1_RSNNS::mlp_Quickprop_04
|
04:40:38.393
|
04:40:39.209
|
0.816
|
0.5884
|
0.5071
|
|
maxiter = 10000
|
|
|
uDmod1_RSNNS::mlp_Quickprop_05
|
04:40:39.209
|
04:40:39.998
|
0.789
|
0.5884
|
0.5069
|
|
maxiter = 10000
|
|
|
uDmod1_RSNNS::mlp_Quickprop_06
|
04:40:39.999
|
04:40:40.957
|
0.958
|
0.5885
|
0.5075
|
|
maxiter = 10000
|
|
|
uDmod1_RSNNS::mlp_Quickprop_07
|
04:40:40.958
|
04:40:41.827
|
0.869
|
0.5884
|
0.5068
|
|
maxiter = 10000
|
|
|
uDmod1_RSNNS::mlp_Quickprop_08
|
04:40:41.828
|
04:40:42.606
|
0.778
|
0.5884
|
0.5069
|
|
maxiter = 10000
|
|
|
uDmod1_RSNNS::mlp_Quickprop_09
|
04:40:42.607
|
04:40:43.415
|
0.808
|
0.5885
|
0.5075
|
|
maxiter = 10000
|
|
|
uDmod1_RSNNS::mlp_Quickprop_10
|
04:40:43.415
|
04:40:44.215
|
0.800
|
0.5884
|
0.5070
|
|
maxiter = 10000
|
|
|
uDmod1_RSNNS::mlp_Rprop_01
|
04:43:20.964
|
04:43:21.042
|
0.078
|
0.0667
|
0.0515
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_Rprop_02
|
04:43:21.042
|
04:43:21.133
|
0.091
|
0.1403
|
0.1012
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_Rprop_03
|
04:43:21.133
|
04:43:21.211
|
0.078
|
0.1204
|
0.0819
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_Rprop_04
|
04:43:21.211
|
04:43:21.302
|
0.091
|
0.0620
|
0.0486
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_Rprop_05
|
04:43:21.302
|
04:43:21.380
|
0.078
|
0.1315
|
0.0833
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_Rprop_06
|
04:43:21.380
|
04:43:21.473
|
0.093
|
0.1240
|
0.0828
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_Rprop_07
|
04:43:21.473
|
04:43:21.552
|
0.079
|
0.4062
|
0.2843
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_Rprop_08
|
04:43:21.552
|
04:43:21.642
|
0.090
|
0.1330
|
0.0861
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_Rprop_09
|
04:43:21.642
|
04:43:21.726
|
0.084
|
0.0505
|
0.0400
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_Rprop_10
|
04:43:21.726
|
04:43:21.804
|
0.078
|
0.3232
|
0.2421
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_SCG_01
|
04:44:13.711
|
04:44:13.840
|
0.129
|
0.1720
|
0.1301
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_SCG_02
|
04:44:13.840
|
04:44:13.981
|
0.141
|
0.0846
|
0.0659
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_SCG_03
|
04:44:13.981
|
04:44:14.121
|
0.140
|
0.1293
|
0.0883
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_SCG_04
|
04:44:14.121
|
04:44:14.262
|
0.141
|
0.1396
|
0.1038
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_SCG_05
|
04:44:14.262
|
04:44:14.400
|
0.138
|
0.1414
|
0.1023
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_SCG_06
|
04:44:14.400
|
04:44:14.540
|
0.140
|
0.0569
|
0.0466
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_SCG_07
|
04:44:14.540
|
04:44:14.634
|
0.094
|
0.4021
|
0.3555
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_SCG_08
|
04:44:14.634
|
04:44:14.753
|
0.119
|
0.1967
|
0.1424
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_SCG_09
|
04:44:14.753
|
04:44:14.862
|
0.109
|
0.1458
|
0.1040
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_SCG_10
|
04:44:14.862
|
04:44:15.003
|
0.141
|
0.1122
|
0.0825
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_Std_Backpropagation_01
|
04:44:58.260
|
04:44:58.343
|
0.083
|
0.1763
|
0.1290
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_Std_Backpropagation_02
|
04:44:58.343
|
04:44:58.429
|
0.086
|
0.1936
|
0.1454
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_Std_Backpropagation_03
|
04:44:58.430
|
04:44:58.515
|
0.085
|
0.1844
|
0.1375
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_Std_Backpropagation_04
|
04:44:58.515
|
04:44:58.599
|
0.084
|
0.2419
|
0.1921
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_Std_Backpropagation_05
|
04:44:58.601
|
04:44:58.688
|
0.087
|
0.1657
|
0.1228
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_Std_Backpropagation_06
|
04:44:58.689
|
04:44:58.770
|
0.081
|
0.1436
|
0.1074
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_Std_Backpropagation_07
|
04:44:58.772
|
04:44:58.858
|
0.086
|
0.1442
|
0.1115
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_Std_Backpropagation_08
|
04:44:58.859
|
04:44:58.945
|
0.086
|
0.2082
|
0.1756
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_Std_Backpropagation_09
|
04:44:58.947
|
04:44:59.029
|
0.082
|
0.2326
|
0.2057
|
|
maxiter = 1000
|
|
|
uDmod1_RSNNS::mlp_Std_Backpropagation_10
|
04:44:59.030
|
04:44:59.116
|
0.086
|
0.2260
|
0.1941
|
|
maxiter = 1000
|
|
|
uDmod1_simpleNeural::sN.MLPtrain_01
|
04:49:29.834
|
04:49:30.018
|
0.184
|
0.5846
|
0.5052
|
|
maxiter = 1000
|
for bi- or multiclass classification
|
|
uDmod1_simpleNeural::sN.MLPtrain_02
|
04:49:30.020
|
04:49:30.208
|
0.188
|
0.5846
|
0.5052
|
|
maxiter = 1000
|
for bi- or multiclass classification
|
|
uDmod1_simpleNeural::sN.MLPtrain_03
|
04:49:30.209
|
04:49:30.386
|
0.177
|
0.5846
|
0.5052
|
|
maxiter = 1000
|
for bi- or multiclass classification
|
|
uDmod1_simpleNeural::sN.MLPtrain_04
|
04:49:30.386
|
04:49:30.574
|
0.188
|
0.5846
|
0.5052
|
|
maxiter = 1000
|
for bi- or multiclass classification
|
|
uDmod1_simpleNeural::sN.MLPtrain_05
|
04:49:30.574
|
04:49:30.758
|
0.184
|
0.5846
|
0.5052
|
|
maxiter = 1000
|
for bi- or multiclass classification
|
|
uDmod1_simpleNeural::sN.MLPtrain_06
|
04:49:30.758
|
04:49:30.957
|
0.199
|
0.5846
|
0.5052
|
|
maxiter = 1000
|
for bi- or multiclass classification
|
|
uDmod1_simpleNeural::sN.MLPtrain_07
|
04:49:30.961
|
04:49:31.150
|
0.189
|
0.5846
|
0.5052
|
|
maxiter = 1000
|
for bi- or multiclass classification
|
|
uDmod1_simpleNeural::sN.MLPtrain_08
|
04:49:31.150
|
04:49:31.343
|
0.193
|
0.5846
|
0.5052
|
|
maxiter = 1000
|
for bi- or multiclass classification
|
|
uDmod1_simpleNeural::sN.MLPtrain_09
|
04:49:31.345
|
04:49:31.521
|
0.176
|
0.5846
|
0.5052
|
|
maxiter = 1000
|
for bi- or multiclass classification
|
|
uDmod1_simpleNeural::sN.MLPtrain_10
|
04:49:31.521
|
04:49:31.714
|
0.193
|
0.5846
|
0.5052
|
|
maxiter = 1000
|
for bi- or multiclass classification
|
|
uDmod1_snnR::snnR_01
|
04:49:59.086
|
04:49:59.111
|
0.025
|
0.3595
|
0.3116
|
|
maxiter = 200
|
better on multi
|
|
uDmod1_snnR::snnR_02
|
04:49:59.127
|
04:49:59.143
|
0.016
|
0.2927
|
0.2512
|
|
maxiter = 200
|
better on multi
|
|
uDmod1_snnR::snnR_03
|
04:49:59.143
|
04:49:59.172
|
0.029
|
0.2927
|
0.2512
|
|
maxiter = 200
|
better on multi
|
|
uDmod1_snnR::snnR_04
|
04:49:59.174
|
04:49:59.194
|
0.020
|
0.2927
|
0.2512
|
|
maxiter = 200
|
better on multi
|
|
uDmod1_snnR::snnR_05
|
04:49:59.194
|
04:49:59.258
|
0.064
|
0.3595
|
0.3116
|
|
maxiter = 200
|
better on multi
|
|
uDmod1_snnR::snnR_06
|
04:49:59.259
|
04:49:59.271
|
0.012
|
0.2927
|
0.2512
|
|
maxiter = 200
|
better on multi
|
|
uDmod1_snnR::snnR_07
|
04:49:59.287
|
04:49:59.323
|
0.036
|
0.3595
|
0.3116
|
|
maxiter = 200
|
better on multi
|
|
uDmod1_snnR::snnR_08
|
04:49:59.325
|
04:49:59.344
|
0.019
|
0.2927
|
0.2512
|
|
maxiter = 200
|
better on multi
|
|
uDmod1_snnR::snnR_09
|
04:49:59.345
|
04:49:59.364
|
0.019
|
0.2927
|
0.2512
|
|
maxiter = 200
|
better on multi
|
|
uDmod1_snnR::snnR_10
|
04:49:59.364
|
04:49:59.407
|
0.043
|
0.3595
|
0.3116
|
|
maxiter = 200
|
better on multi
|
|
uDmod1_softmaxreg::softmaxreg_01
|
04:50:01.720
|
04:50:01.720
|
0.000
|
0.5884
|
0.5069
|
|
maxiter = 1000
|
|
|
uDmod1_softmaxreg::softmaxreg_02
|
04:50:01.720
|
04:50:01.720
|
0.000
|
0.5884
|
0.5069
|
|
maxiter = 1000
|
|
|
uDmod1_softmaxreg::softmaxreg_03
|
04:50:01.736
|
04:50:01.736
|
0.000
|
0.5884
|
0.5069
|
|
maxiter = 1000
|
|
|
uDmod1_softmaxreg::softmaxreg_04
|
04:50:01.736
|
04:50:01.736
|
0.000
|
0.5884
|
0.5069
|
|
maxiter = 1000
|
|
|
uDmod1_softmaxreg::softmaxreg_05
|
04:50:01.736
|
04:50:01.736
|
0.000
|
0.5884
|
0.5069
|
|
maxiter = 1000
|
|
|
uDmod1_softmaxreg::softmaxreg_06
|
04:50:01.736
|
04:50:01.736
|
0.000
|
0.5884
|
0.5069
|
|
maxiter = 1000
|
|
|
uDmod1_softmaxreg::softmaxreg_07
|
04:50:01.736
|
04:50:01.736
|
0.000
|
0.5884
|
0.5069
|
|
maxiter = 1000
|
|
|
uDmod1_softmaxreg::softmaxreg_08
|
04:50:01.736
|
04:50:01.736
|
0.000
|
0.5884
|
0.5069
|
|
maxiter = 1000
|
|
|
uDmod1_softmaxreg::softmaxreg_09
|
04:50:01.736
|
04:50:01.751
|
0.015
|
0.5884
|
0.5069
|
|
maxiter = 1000
|
|
|
uDmod1_softmaxreg::softmaxreg_10
|
04:50:01.751
|
04:50:01.751
|
0.000
|
0.5884
|
0.5069
|
|
maxiter = 1000
|
|
|
uDmod1_tsensembler::tsensembler_01
|
04:50:59.194
|
04:50:59.286
|
0.092
|
0.1147
|
0.0890
|
|
maxiter = 150
|
uses nnet
|
|
uDmod1_tsensembler::tsensembler_02
|
04:50:59.287
|
04:50:59.405
|
0.118
|
0.1147
|
0.0890
|
|
maxiter = 150
|
uses nnet
|
|
uDmod1_tsensembler::tsensembler_03
|
04:50:59.405
|
04:50:59.507
|
0.102
|
0.1147
|
0.0890
|
|
maxiter = 150
|
uses nnet
|
|
uDmod1_tsensembler::tsensembler_04
|
04:50:59.508
|
04:50:59.587
|
0.079
|
0.1149
|
0.0891
|
|
maxiter = 150
|
uses nnet
|
|
uDmod1_tsensembler::tsensembler_05
|
04:50:59.589
|
04:50:59.659
|
0.070
|
0.1147
|
0.0891
|
|
maxiter = 150
|
uses nnet
|
|
uDmod1_tsensembler::tsensembler_06
|
04:50:59.661
|
04:50:59.728
|
0.067
|
0.1148
|
0.0893
|
|
maxiter = 150
|
uses nnet
|
|
uDmod1_tsensembler::tsensembler_07
|
04:50:59.729
|
04:50:59.794
|
0.065
|
0.1146
|
0.0890
|
|
maxiter = 150
|
uses nnet
|
|
uDmod1_tsensembler::tsensembler_08
|
04:50:59.794
|
04:50:59.844
|
0.050
|
0.2116
|
0.1633
|
|
maxiter = 150
|
uses nnet
|
|
uDmod1_tsensembler::tsensembler_09
|
04:50:59.844
|
04:50:59.951
|
0.107
|
0.1147
|
0.0890
|
|
maxiter = 150
|
uses nnet
|
|
uDmod1_tsensembler::tsensembler_10
|
04:50:59.953
|
04:51:00.022
|
0.069
|
0.1147
|
0.0890
|
|
maxiter = 150
|
uses nnet
|
|
uDmod1_validann::ann_BFGS_01
|
04:53:24.869
|
04:53:25.578
|
0.709
|
0.0532
|
0.0444
|
|
maxiter = 200
|
optim
|
|
uDmod1_validann::ann_BFGS_02
|
04:53:25.579
|
04:53:26.286
|
0.707
|
0.0460
|
0.0372
|
|
maxiter = 200
|
optim
|
|
uDmod1_validann::ann_BFGS_03
|
04:53:26.291
|
04:53:26.995
|
0.704
|
0.1131
|
0.0715
|
|
maxiter = 200
|
optim
|
|
uDmod1_validann::ann_BFGS_04
|
04:53:26.997
|
04:53:27.700
|
0.703
|
0.0569
|
0.0447
|
|
maxiter = 200
|
optim
|
|
uDmod1_validann::ann_BFGS_05
|
04:53:27.701
|
04:53:28.409
|
0.708
|
0.1144
|
0.0785
|
|
maxiter = 200
|
optim
|
|
uDmod1_validann::ann_BFGS_06
|
04:53:28.409
|
04:53:29.113
|
0.704
|
0.1156
|
0.0782
|
|
maxiter = 200
|
optim
|
|
uDmod1_validann::ann_BFGS_07
|
04:53:29.114
|
04:53:29.826
|
0.712
|
0.1174
|
0.0776
|
|
maxiter = 200
|
optim
|
|
uDmod1_validann::ann_BFGS_08
|
04:53:29.828
|
04:53:30.523
|
0.695
|
0.0522
|
0.0368
|
|
maxiter = 200
|
optim
|
|
uDmod1_validann::ann_BFGS_09
|
04:53:30.523
|
04:53:31.224
|
0.701
|
0.0885
|
0.0689
|
|
maxiter = 200
|
optim
|
|
uDmod1_validann::ann_BFGS_10
|
04:53:31.224
|
04:53:31.930
|
0.706
|
0.0420
|
0.0326
|
|
maxiter = 200
|
optim
|
|
uDmod1_validann::ann_CG_01
|
05:03:15.638
|
05:03:20.274
|
4.636
|
0.0580
|
0.0478
|
|
maxiter = 1000
|
optim
|
|
uDmod1_validann::ann_CG_02
|
05:03:20.274
|
05:03:24.900
|
4.626
|
0.0600
|
0.0495
|
|
maxiter = 1000
|
optim
|
|
uDmod1_validann::ann_CG_03
|
05:03:24.901
|
05:03:29.529
|
4.628
|
0.0732
|
0.0612
|
|
maxiter = 1000
|
optim
|
|
uDmod1_validann::ann_CG_04
|
05:03:29.529
|
05:03:34.225
|
4.696
|
0.0506
|
0.0406
|
|
maxiter = 1000
|
optim
|
|
uDmod1_validann::ann_CG_05
|
05:03:34.225
|
05:03:38.826
|
4.601
|
0.0649
|
0.0521
|
|
maxiter = 1000
|
optim
|
|
uDmod1_validann::ann_CG_06
|
05:03:38.828
|
05:03:43.452
|
4.624
|
0.0792
|
0.0632
|
|
maxiter = 1000
|
optim
|
|
uDmod1_validann::ann_CG_07
|
05:03:43.452
|
05:03:48.102
|
4.650
|
0.1111
|
0.0687
|
|
maxiter = 1000
|
optim
|
|
uDmod1_validann::ann_CG_08
|
05:03:48.105
|
05:03:52.687
|
4.582
|
0.0522
|
0.0431
|
|
maxiter = 1000
|
optim
|
|
uDmod1_validann::ann_CG_09
|
05:03:52.687
|
05:03:57.295
|
4.608
|
0.0817
|
0.0668
|
|
maxiter = 1000
|
optim
|
|
uDmod1_validann::ann_CG_10
|
05:03:57.295
|
05:04:02.003
|
4.708
|
0.0496
|
0.0398
|
|
maxiter = 1000
|
optim
|
|
uDmod1_validann::ann_L-BFGS-B_01
|
05:09:37.070
|
05:09:37.820
|
0.750
|
0.1422
|
0.1054
|
|
maxiter = 200
|
optim
|
|
uDmod1_validann::ann_L-BFGS-B_02
|
05:09:37.835
|
05:09:38.623
|
0.788
|
0.0668
|
0.0554
|
|
maxiter = 200
|
optim
|
|
uDmod1_validann::ann_L-BFGS-B_03
|
05:09:38.624
|
05:09:39.462
|
0.838
|
0.0726
|
0.0614
|
|
maxiter = 200
|
optim
|
|
uDmod1_validann::ann_L-BFGS-B_04
|
05:09:39.478
|
05:09:40.255
|
0.777
|
0.0665
|
0.0493
|
|
maxiter = 200
|
optim
|
|
uDmod1_validann::ann_L-BFGS-B_05
|
05:09:40.256
|
05:09:41.039
|
0.783
|
0.0520
|
0.0427
|
|
maxiter = 200
|
optim
|
|
uDmod1_validann::ann_L-BFGS-B_06
|
05:09:41.040
|
05:09:41.833
|
0.793
|
0.1158
|
0.0756
|
|
maxiter = 200
|
optim
|
|
uDmod1_validann::ann_L-BFGS-B_07
|
05:09:41.834
|
05:09:42.706
|
0.872
|
0.1173
|
0.0777
|
|
maxiter = 200
|
optim
|
|
uDmod1_validann::ann_L-BFGS-B_08
|
05:09:42.706
|
05:09:43.531
|
0.825
|
0.1233
|
0.0831
|
|
maxiter = 200
|
optim
|
|
uDmod1_validann::ann_L-BFGS-B_09
|
05:09:43.531
|
05:09:44.328
|
0.797
|
0.1064
|
0.0817
|
|
maxiter = 200
|
optim
|
|
uDmod1_validann::ann_L-BFGS-B_10
|
05:09:44.328
|
05:09:45.123
|
0.795
|
0.0807
|
0.0632
|
|
maxiter = 200
|
optim
|
|
uDmod1_validann::ann_Nelder-Mead_01
|
05:11:53.062
|
05:11:53.999
|
0.937
|
0.1921
|
0.1499
|
|
maxiter = 10000
|
optim
|
|
uDmod1_validann::ann_Nelder-Mead_02
|
05:11:53.999
|
05:11:55.164
|
1.165
|
0.1857
|
0.1512
|
|
maxiter = 10000
|
optim
|
|
uDmod1_validann::ann_Nelder-Mead_03
|
05:11:55.166
|
05:11:56.346
|
1.180
|
0.2251
|
0.1750
|
|
maxiter = 10000
|
optim
|
|
uDmod1_validann::ann_Nelder-Mead_04
|
05:11:56.346
|
05:11:57.504
|
1.158
|
0.1858
|
0.1527
|
|
maxiter = 10000
|
optim
|
|
uDmod1_validann::ann_Nelder-Mead_05
|
05:11:57.504
|
05:11:58.795
|
1.291
|
0.1889
|
0.1437
|
|
maxiter = 10000
|
optim
|
|
uDmod1_validann::ann_Nelder-Mead_06
|
05:11:58.796
|
05:11:59.937
|
1.141
|
0.1497
|
0.1230
|
|
maxiter = 10000
|
optim
|
|
uDmod1_validann::ann_Nelder-Mead_07
|
05:11:59.939
|
05:12:01.092
|
1.153
|
0.3195
|
0.2348
|
|
maxiter = 10000
|
optim
|
|
uDmod1_validann::ann_Nelder-Mead_08
|
05:12:01.092
|
05:12:02.170
|
1.078
|
0.2090
|
0.1549
|
|
maxiter = 10000
|
optim
|
|
uDmod1_validann::ann_Nelder-Mead_09
|
05:12:02.170
|
05:12:03.070
|
0.900
|
0.1782
|
0.1417
|
|
maxiter = 10000
|
optim
|
|
uDmod1_validann::ann_Nelder-Mead_10
|
05:12:03.071
|
05:12:04.253
|
1.182
|
0.2264
|
0.1624
|
|
maxiter = 10000
|
optim
|
|
uDmod1_validann::ann_SANN_01
|
05:14:06.814
|
05:14:07.894
|
1.080
|
0.3134
|
0.2526
|
|
maxiter = 10000
|
optim
|
|
uDmod1_validann::ann_SANN_02
|
05:14:07.895
|
05:14:08.846
|
0.951
|
0.2621
|
0.2201
|
|
maxiter = 10000
|
optim
|
|
uDmod1_validann::ann_SANN_03
|
05:14:08.847
|
05:14:09.793
|
0.946
|
0.2560
|
0.2046
|
|
maxiter = 10000
|
optim
|
|
uDmod1_validann::ann_SANN_04
|
05:14:09.795
|
05:14:10.733
|
0.938
|
0.3248
|
0.2664
|
|
maxiter = 10000
|
optim
|
|
uDmod1_validann::ann_SANN_05
|
05:14:10.733
|
05:14:11.688
|
0.955
|
0.2888
|
0.2387
|
|
maxiter = 10000
|
optim
|
|
uDmod1_validann::ann_SANN_06
|
05:14:11.688
|
05:14:12.660
|
0.972
|
0.2870
|
0.2420
|
|
maxiter = 10000
|
optim
|
|
uDmod1_validann::ann_SANN_07
|
05:14:12.661
|
05:14:13.621
|
0.960
|
0.3616
|
0.2892
|
|
maxiter = 10000
|
optim
|
|
uDmod1_validann::ann_SANN_08
|
05:14:13.622
|
05:14:14.562
|
0.940
|
0.2756
|
0.2334
|
|
maxiter = 10000
|
optim
|
|
uDmod1_validann::ann_SANN_09
|
05:14:14.577
|
05:14:15.531
|
0.954
|
0.3037
|
0.2475
|
|
maxiter = 10000
|
optim
|
|
uDmod1_validann::ann_SANN_10
|
05:14:15.531
|
05:14:16.483
|
0.952
|
0.3061
|
0.2618
|
|
maxiter = 10000
|
optim
|